De digitale vraagbaak voor het wiskundeonderwijs

home |  vandaag |  gisteren |  bijzonder |  gastenboek |  wie is wie? |  verhalen |  contact

HOME

samengevat
vragen bekijken
een vraag stellen
hulpjes
zoeken
FAQ
links
twitter
boeken
help

inloggen

colofon

  \require{AMSmath}

Reageren...

Re: Laplace getransformeerde

Dat was inderdaad niet handig van mij. Ik heb de n(n+1) vervangen door k(k+1). Ik heb de oplossing bijna gevonden maar loop aan het eind vast.

Ik heb nu:

1. de indiciaalvergelijking

s(s-1)-k(k+1)=0

de nulpunten zijn s1=-k en s2=k+1,
dus s1-s2 (en s2-s1) is een geheel getal dus ik kan maar één oplossing vinden.

2. de recurrente relatie is

(*) [(n+s)(n+s-1)-k(k+1)]a_n=[(n-2+s)^2]a_(n-1)

Nu moet ik een van de nulpunten substitueren, voor het grootste nulpunt is er altijd een oplossing, dus ik substitueer k+1 in (*), dit geeft de recurrent relatie

(*1) [(n^2)+2nk+1]a_n=[(n+k-1)^2]a_(n-1)

Dus a_n={[(n+k-1)^2]/[(n^2)+2nk+1]}a_(n-1)

Mijn machtreeksoplossing is

SOM[(a_n)z^(n+k+1)]=a0*z^(k+1)+a1*z^(k+2)+a2*z^(k+3)+...
(som loopt van n=0 tot oneindig).

met a_n zoals in (*1).

Nu weet ik niet precies hoe ik verder moet.
Ik heb a_0=1 genomen en ik ben gaan kijken of ik een formule kan vinden voor a_n, ik heb het volgende

a1=[k^2]/[2k+2]
a2={[(k+1)^2]/[4k+5]}*a1
a3={[(k+2)^2]/[6k+10]}*a2
a4={[(k+3)^2]/[8k+17]}*a3
etc.
Er zit duidelijk een patroon in maar ik zie niet hoe deze kan formuleren.
Ik weet nu hoe ik nu verder moet. Ik wil namelijk nog bepalen of de oplossing convergeert en daarvoor heb ik een formule voor a_n nodig, of misschien is de informatie die ik heb al voldoende om dit te bepalen?

Groeten,

Viky

Antwoord

Viky,
Ik twijfel og jouw recurrente relatie wel juist is. Uitgaande van de DV
z2(1-z2)y"(z)-2z3y'(z)-n(n+1)y(z)=0 en y(z)=åa(k)z^(k+s),k van 0 naar oneindig geeft:å{(k+s)(k+s-1)-n(n+1)}a(k)z^(k+s)-
å(k+s)(k+s+1)a(k)z^(k+s+2)=0.Hieruit volgt door in de eerste reeks k=0 en k=1 te nemen en vervolgens de index k in deze reeks te vervangen door j+2, geeft.{s(s-1)-n(n+1)}a(0)+{s(1+s)-n(n+1)}a(1)z+
å[{(k+s+2)(k+s+1)-n(n+1)}a(k+2)-(k+s)(k+s+1)a)k)]z^(k+2=0.Omdat a(0)¹0 is,is s=n+1 os s=-n.Hieruit volgt dat a(1)=a(3)=...=0, zodatvoor s=n+1 geldt:
a(k+2)=(k+n+1)(k+n+2)a(k)/[(k+n+3)(k+n+2)-n(n+1)],voor k=0,2,4,...
Eerst maar kijken of je het hier mee eens bent.

Gebruik dit formulier alleen om te reageren op de inhoud van de vraag en/of het antwoord hierboven. Voor het stellen van nieuwe vragen kan je gebruik maken van een vraag stellen in het menu aan de linker kant. Alvast bedankt!

Reactie:

Klik eerst in het tekstvlak voordat je deze knopjes en tekens gebruikt.
Pas op: onderstaande knopjes en speciale karakters werken niet bij ALLE browsers!


áâæàåãäßçéêèëíîìïñóôòøõöúûùüýÿ½¼¾£®©




$\mathbf{N}$ $\mathbf{Z}$ $\mathbf{Q}$ $\mathbf{R}$ $\mathbf{C}$
Categorie: Differentiaalvergelijking
Ik ben:
Naam:
Emailadres:
Datum:20-5-2024